Qdrant in OpenRAG
Qdrant is the high-performance vector database used for semantic search in OpenRAG.Configuration
Image:qdrant/qdrant:latest
Ports:
- 6333: HTTP API
- 6334: gRPC API
qdrant_data:/qdrant/storage
Dashboard: http://localhost:6333/dashboard
Vector Configuration
Dimension: 384 (matches sentence-transformers all-MiniLM-L6-v2) Distance Metric: Cosine similarity Index Type: HNSW (Hierarchical Navigable Small World)Collections
OpenRAG uses Qdrant collections to organize vectors: Default Collection:default
Collection Parameters:
REST API Usage
List Collections:Python Client Usage
OpenRAG uses theqdrant-client Python library:
Current Data in Qdrant
Test Results (after uploading 31 WTE documents):- Documents processed: 28
- Total chunks: 928
- Average chunks per document: 33
- Vector dimension: 384
- Storage status: green (healthy)
Search Performance
Search Latency: 50-150ms (typical) Throughput: Hundreds of searches per second Accuracy: Cosine similarity scores range from 0.0 (orthogonal) to 1.0 (identical) Typical Score Thresholds:- 0.7+: Highly relevant
- 0.5-0.7: Moderately relevant
- 0.3-0.5: Potentially relevant
<0.3: Not relevant (filtered out in OpenRAG)
Dashboard Features
Access at http://localhost:6333/dashboard Features:- Collection browser
- Point inspector
- Search testing
- Performance metrics
- Configuration viewer
Collection Management
Create New Collection:Filtering
Qdrant supports payload filtering:Optimization
HNSW Parameters:m: Number of connections per layer (16 recommended)ef_construct: Construction time/accuracy tradeoff (100-200 recommended)ef: Search time/accuracy tradeoff (dynamic, typically 128)
- Points indexed after reaching threshold
- Default: 20,000 points
- Lower for better search accuracy, higher for faster insertions
Backup and Restore
Create Snapshot:Monitoring
Collection Stats:Troubleshooting
No Results Returned:- Check score_threshold (try lowering to 0.2)
- Verify vector dimensions match (384)
- Ensure collection has points
- Increase ef parameter
- Optimize HNSW configuration
- Check system resources
- Monitor disk space
- Create snapshots and cleanup old data
- Consider collection partitioning
API Reference
Full Qdrant API documentation: https://qdrant.tech/documentation/ Common endpoints used in OpenRAG:GET /collections: List all collectionsGET /collections/{name}: Collection infoPOST /collections/{name}/points/search: Vector searchPUT /collections/{name}/points: Insert/update pointsDELETE /collections/{name}/points: Delete points